CC 12 (Group Theory-II) F.M: 10 TIME: 30 MIN

* Required		
1.	Email *	
2.	NAME *	
	TWW IE	
3.	UNIVERSITY REGISTRATION NUMBER *	
٥.	ONIVERSITY REGISTRATION NOPIBER	
4	1 N IIV (500) TV (0011 N II I	
4.	UNIVERSITY ROLL NUMBER *	
	Untitled Section	
	Ontribu Jechon	

- 1. $\emptyset: G \to G_1$ be an automorphism, then
 - a. G and G_1 are same,
 - b. Ø is a homomorphism,
 - c. Ø is a bijective mapping.
 - i. Only (a) and (b) are true, but (c) is false
 - ii. Only (a) and (c) are true, but (b) is false
 - iii. Only (b) and (c) are true, but (a) is false
 - iv. All (a), (b), (c) are true.

Mark only one oval.

() i

ii

() iv

6.

2. G be a group of order $p^m n$, where p is a prime and p is not a divisor of n. If H is a p-Sylow subgroup, then

i.
$$o(H) = p$$
,

ii.
$$o(H) = p^m$$
,

iii.
$$o(H) = p^m n$$

iv. none of above.

Mark only one oval.

____i

ii

O iv

3.	Number	of Sylow	p-subgroup	of G is
ο.	Humber	OI SYIOW	p-subgroup	OI G IS

- i. 1+kp, for non-negative integer k
- ii. 1+kp such that 1+kp is a divisor of o(G), for nonnegative integer k
- iii. 1+kp such that 1+kp is not a divisor of o(G), for nonnegative integer k
- iv. None of above

İ
ii
;;

() I

8.

4. A_n is a simple group

- i. For all positive integer n
- ii. For all positive integer $n \ge 3$
- iii. For all positive integer $n \ge 5$
- iv. False.

Mark only one oval.

i
ii
iii
iv

5.	Let G be a group and G_1 be the commutator subgroup of G,
	hen

- a. G_1 is normal
- b. G/G_1 is abelian
- c. G is an abelian iff $G_1 = \{e\}$, e is the identity element of G.
- i. Only (a) is true, but (b) and (b) are false
- ii. Only (a) and (b) are true, but (c) is false
- iii. All (a), (b), (c) are true
- iv. All (a), (b), (c) are false

Mark only one oval.

____ii

() ii

O iv

10.

6. If $G_1 \times G_2$ is the external direct product of G_1 , G_2 , then

- a. $G_1 \times G_2$ is a group
- b. $G_1 \times G_2 \cong G_2 \times G_1$.
- i. only (a) is true
- ii. only (b) is true
- iii. both (a) and (b) are true
- iv. both (a) and (b) are false

Mark only one oval.

ii

iii

O iv

	7. G b	e a group of order 121, then
	i.	G is Abelian
	ii.	G is non-Abelian
	Mark only o	one oval.
	i	
	ii	
12.		
	8. If G	be a finite group such that $p o(G)$, p is a prime. Then G
		a element of order p.
	i.	True
	ii.	False
	Mark only o	one oval.
	i	
	ii	
13.		
	9. A fi	nite abelian group is the direct product of cyclic groups.
	i.	True
	ii.	False
	Mark only o	one oval.
	i	
	ii	

10.	G	is an internal direct product of its subgroup H and K,	
if			
a.	evei	ry element of H commutes with every element of K,	
b.	b. every element of G is uniquely expressible as a product o		
	an e	element of H by an element of K.	
	i.	Only (a) is true	
	ii.	Only (b) is true	
	iii.	Both (a) and (b) are true	
	iv.	Both (a) and (b) are false	
Mark on	ly one	oval.	
i			
ii			
iii			
iv			

This content is neither created nor endorsed by Google.

Google Forms